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Contextuality

Motivation(s)

The main question, in some sense, is

given some preparation, ρ, and some observables

A B

C

where

A and B are compatible;

A and C are compatible; and

B and C are not (necessarily) compatible,

does the outcome of observable A, ν(A), depend on whether one measures B
or C simultaneously with A?
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Contextuality

Motivation(s)

Other motivations

Quantum computers seem to be able to solve some problems more
efficiently than their classical counterparts — how come?

What are small quantum computers good for?
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Contextuality

DIY (a simple proof)

DIY: contextuality

consider a grid of 3x3 squares that can take on the values ±1

c1 c2 c3
∏

r1 ±1 ±1 ±1 ±1

r2 ±1 ±1 ±1 ±1

r3 ±1 ±1 ±1 ±1

∏
±1 ±1 ±1

Evaluate the products of the rows and columns, and let
α = πr1 + πr2 + πr3 + πc1 + πc2 − πc3
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Figure: A histogram of α for all possible 29 configurations.
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Contextuality

DIY (a simple proof)

DIY: contextuality – in other words

for α = 6, constrain the products to be:

c1 c2 c3
∏

r1 ? ? ? +1

r2 ? ? ? +1

r3 ? ? ? +1

∏
+1 +1 −1

are there any satisfying assignments?
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Contextuality

BKSC inequality

Bell1 -Kochen-Specker2 -Cabello3 (BKSC) inequality
(for the Peres4 -Mermin5 square)

Consider a system of 2 qubits
prepared according to ρ.

Measure the correlations
between the observables listed
in the columns and rows of the
following table:

c1 c2 c3
∏

r1 Z1 1Z ZZ +1

r2 1X X1 XX +1

r3 ZX XZ YY +1

∏
+1 +1 −1

Evaluate β = 〈r1〉+ 〈r2〉+ 〈r3〉+ 〈c1〉+ 〈c2〉 − 〈c3〉
where, e.g., 〈r1〉 = 〈π{Z1,1Z,ZZ}〉 = 〈Z1 · 1Z · ZZ〉ρ, and so forth.

then, for any state ρ:

For any NCHV theory: β ≤ 4
Quantum Mechanics: β = 6

1J. S. Bell.Rev. Mod. Phys. 38, 447-452 (1966).
2S. Kochen, and E. P. Specker. J. Math. Mech. 17, 59-87 (1967).
3A. Cabello, Phys. Rev. Lett. 101, 210401 (2008).
4A. Peres. Physics Letters A. 151, 107 (1990).
5N. D. Mermin. Phys. Rev. Lett. 65, 3373 (1990).
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Contextuality

Experimental efforts

Experimental efforts

Two trapped Ca ions 6

Path and polarization degrees of freedom of a single photon 7

To generate polarization-spatial path encoded single-
photon states, we used the setup described in Fig. 1. We
experimentally tested the value of ! for 20 different quan-
tum states. It is of utmost importance for the experiment
that the measurements of each of the nine observables in
(2) are context independent [24], in the sense that the
measurement device used for the measurement of, e.g., B

must be the same when B is measured with the compatible
observables A and C, and when B is measured with b and
", which are compatible with B but not with A and C. For
the experiment we used the measurement devices de-
scribed in Fig. 2, which satisfy this requirement.
For a sequential measurement of three compatible ob-

servables on the same photon, we used the single-
observable measuring devices in Fig. 2, appropriately ar-
ranged as described in Fig. 3. Since the predictions of both
noncontextual hidden variable theories and quantum me-
chanics do not depend on the order of the compatible

FIG. 1 (color online). Preparation of the polarization-spatial
path encoded states of single photons. The setup consists of a
source of H-polarized single photons followed by a half wave
plate (HWP) and a polarizing beam splitter (PBS), allowing any
probability distribution of a photon in the paths t and r. The
wedge (W) placed in one of the paths adds an arbitrary phase
shift between both paths. A HWP and a quarter wave plate
(QWP) in each path allow us to rotate the outputs of the PBS
to any polarization. Symbol definitions are given at the bottom of
Fig. 2.

FIG. 2 (color online). Devices for measuring the nine observ-
ables (2). A measurement of A requires only to distinguish
between paths t and r. For measuring b, note that its eigenstates
are ðjti" jriÞ=

ffiffiffi
2

p
and they need to be mapped to the paths t and

r; this is accomplished by interference with the help of an
additional 50=50 beam splitter (BS) and a wedge. The measure-
ments of a and B are standard polarization measurements using a
PBS and a HWP. Observables C, c, #, ", and $ are the product
of a spatial path and a polarization observable %s

i $ %p
j . Each of

these observables has a four-dimensional eigenspace, but since
the observables need to be rowwise and columnwise compatible,
only their common eigenstates can be used for distinguishing the
eigenvalues. This implies that C, c, and $ can be implemented as
Bell measurements with different distributions of the Bell states.
Similarly, # and " are Bell measurements preceded by a
polarization rotation. In this way $ is compatible also with #
and ".

FIG. 3 (color online). Setups for measuring the six sets of
observables to test inequality (1). We explicitly describe the
setup for measuring C, A, and B; the description of the other
setups is obtained by replacing C, A, and B with the correspond-
ing observables. The seven boxes are single-observable measur-
ing devices (see Fig. 2). The photon, prepared in a specific state,
enters the device for measuring C through the device’s input and
follows one of the two possible outcomes. A detection of the
photon in one of these outputs would make the measurement of
the next observable impossible. Instead, we placed, after each of
the two outputs of the C-measuring device, a device for mea-
suring the second observable, A (we thus used two identical
A-measuring devices). Similarly, we also placed, after each of
the four outputs of the A-measuring devices, a device for
measuring the third observable, B (we thus used four identical
B-measuring devices). Note that we need to recreate the eigen-
states of the measured observable before entering the next
observable, since our single-observable measuring devices map
eigenstates to a fixed spatial path and polarization. Finally, we
placed a single-photon detector (D) after each of the eight
outputs of the four B-measuring devices. An individual photon
passing through the whole arrangement is detected only by one
of the eight detectors, which indicates which one of the eight
combinations of results for C, A, and B is obtained.
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6G. Kirchmair et al., Nature 460, 494 (2009).
7E. Amselem et al., Phys. Rev. Lett. 103, 160405 (2009).
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A bit of quantum computer science

Alternatively,

Introduce a probe two-level system (prepare in +1 eigenstate of X)

To measure any two-outcome observable S:
if the system is in a +1 eigenstate of S, do nothing; and
if it is in a -1 eigenstate, apply a phase flip (pauli-Z) to the probe qubit.

For S = P+ − P−, where P+ and P− are the projectors on the +1 and −1
eigenspaces of S, define

US = 12 ⊗ P+ + Z⊗ P−

This transformation can also be expressed as a controlled operation
dependent on the state of the probe qubit:

US = 12 ⊗ P+ + Z⊗ P−
= 1

2
(12 + Z)⊗ (P+ + P−) +

1
2
(12 − Z)⊗ (P+ − P−)

= |0〉〈0| ⊗ 1d + |1〉〈1| ⊗ S ,

which is unitary for S unitary.
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A bit of quantum computer science

circuit for ensemble measurement of correlations

Ensemble measurement of 〈S1S2S3〉1

S1 S2 S3

X|+〉

1

1

* An ensemble measurement of X on the probe qubit evaluates to the required
correlation.
* Incidentally, this model of computation is known as Deterministic Quantum
Computation with one qubit (DQC1)
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A bit of quantum computer science

circuit for ensemble measurement of correlations
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Solid-state NMR for QIP

primer

C1 C2

Cm

Hm1,2

H1

H2

kHz C1 C2 Cm
C1 6.380 0.297 0.780
C2 -0.025 -1.533 1.050
Cm 0.071 0.042 -5.650
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Figure: Malonic acid (C3H4O4) molecule and Hamiltonian parameters (all values in
kHz). Elements along the diagonal represent chemical shifts, ωi, with respect to the
transmitter frequency (with the Hamiltonian

∑
i πωiZi). Above the diagonal are

dipolar coupling constants (
∑
i<j πDi,j(2 ZiZj −XiXj −YiYj), and below the

diagonal are J coupling constants, (
∑
i<j

π
2
Ji,j(ZiZj +XiXj +YiYj). An accurate

natural Hamiltonian is necessary for high fidelity control and is obtained from precise
spectral fitting.
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Solid-state NMR for QIP

testing contextuality on ensembles of molecular nuclear spins in the solid state

Experimental results: β = 5.2± 0.1
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Figure: Summary of experimental results (solid lines) and the corresponding spectral
fits (dashed lines). Shown are (a) (in green) a proton-decoupled 13C spectrum
following polarization-transfer from the abundant protons; (b) (in blue) the spectrum

produced by the initial preparation procedure, X⊗ 12
2

⊗ 12
2

; and (c) (in red) the
average of the six spectra corresponding to the six terms in β weighted by the
appropriate signs.
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Solid-state NMR for QIP

testing contextuality on ensembles of molecular nuclear spins in the solid state

What I was trying to say is

BKSC inequality creates a separation between NCHV theories and QM.
Non-contextuality is testable ...
... using DQC1
... on ensembles
... of nuclear spins
... in the solid state
... using their magnetic resonance.

Quantum Information Processing is useful for tasks other than factoring.
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Solid-state NMR for QIP

testing contextuality on ensembles of molecular nuclear spins in the solid state

If you have been,

Thanks for listening.
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